Publications

Yun S, Yang B, Anair JA, Fleps SW, Martin MM, Yeh N-S, Contractor, A, Parker JG. Modulating D1 rather than D2 receptor-expressing spiny-projection neurons corresponds to optimal antipsychotic effect. https://www.biorxiv.org/content/10.1101/2021.01.20.427525v2


Moya, N.A., Yun, S., Fleps, S.W. et al. The effect of selective nigrostriatal dopamine excess on behaviors linked to the cognitive and negative symptoms of schizophrenia. Neuropsychopharmacol. (2022). rdcu.be/cZJWF


Legaria AA, Matikainen-Ankney BA, Yang B, Ahanonu B, Licholai JA, Parker JG*, Kravitz AV*. Fiber photometry in striatum reflects primarily non-somatic changes in calcium. Nature Neuroscience 25: 1124–1128 (2022). https://pubmed.ncbi.nlm.nih.gov/36042311/


Trevathan J, Asp A, Nicolai E, Trevathan J, Kremer N, Kozai T, Cheng D, Schachter M, Nassi J, Otte S, Parker JG,  Lujan JL, Ludwig K. Calcium imaging in freely-moving mice during electrical stimulation of deep brain structures. J Neural Eng. 18 026008 (2021). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8485730/


Parker JG*, Marshall JD*, Ahanonu B, Wu Y-W, Kim H, Zhang Y, Li JZ, Ding JB, Ehlers MD, Schnitzer MJ. Diametric neural ensemble deficits in parkinsonian and dyskinetic states.  Nature 557(7704):177-182 (2018). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526726/


Grewe BF, J. Grundeman J, Kitch LJ, Lecoq JA, Parker JG, Marshall JD, Larkin M, Jercog P, Li JZ, Luthi A, Schnitzer MJ. Neural ensemble dynamics underlying a long-term associative memory. Nature 543(7647):670-675 (2017).  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5378308/


Hamel EJ, Grewe BF, Parker JG, Schnitzer MJ. Cellular level brain imaging in behaving mammals: an engineering approach. Neuron 86:140-159 (2015).  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5758309/


Guler AD, Rainwater A, Parker JG, Jones GL, Argili E, Arenkiel BR, Ehlerd MD, Bonci A, Zweifel LD, Palmiter RD. Transient activation of specific neurons in mice by selective expression of the capsaicin receptor. Nat. Commun. 3:746 (2012). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3592340/


Parker JG, Wanat MJ, Soden ME, Ahmad K, Zweifel LS, Bamford NS, Palmiter RD. Attenuating GABA(A) receptor signaling in dopamine neurons selectively enhances reward learning and alters risk preference in mice. J. Neurosci. 31(47):17103-12 (2011). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3235504/


Parker JG*, Beutler LR*, Palmiter RD. The contribution of NMDA receptor signaling in the corticobasal ganglia reward network to appetitive Pavlovian conditioning. J. Neurosci. 31(31):11362-9 (2011). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3156031/


Wall VZ, Parker JG, Fadok JP, Darvas M, Zweifel LS, Palmiter RD. A behavioral genetics approach to understanding D1 receptor involvement in phasic dopamine signaling. Mol. Cell Neurosci. 46(1):21-31 (2011). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3035386/


Parker JG, Zweifel LS, Clark JJ, Evans SB, Phillips PEM, Palmiter RD. Absence of NMDARs in dopamine neurons attenuates dopamine release but not conditioned approach during Pavlovian conditioning. PNAS. 107(30): 13492-96 (2010). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2922155/


Clark JJ, Sandberg SG, Wanat MJ, Gan JO, Horne EA, Hart AS, Akers CA, Parker JG, Willuhn I, Martinez V, Evans SB, Stella N, Phillips PE. Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals. Nat. Methods. 7(2):126-9 (2010). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2849934/


Zweifel LS, Parker JG, Lobb CJ, Rainwater A, Wall VZ, Fadok JP, Darvas M, Kim MJ, Mizumori SJY, Paladini CS, Phillips PEM, Palmiter RD.  Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior. PNAS. 106(18): 7281-88 (2009). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2678650/

%d bloggers like this: